Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 917: 170583, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38309347

RESUMEN

River monitoring programs worldwide consistently unveil micropollutant concentrations (pesticide, pharmaceuticals, and industrial chemicals) exceeding regulatory quality targets with deteriorating effects on aquatic communities. However, both the composition and individual concentrations of micropollutants are likely to vary with the catchment land use, in particular regarding urban and agricultural area as the primary sources of micropollutants. In this study, we used a dataset of 109 governmental monitoring sites with micropollutants monitored across the Federal State of North Rhine-Westphalia, Germany, to investigate the relationship between high-resolution catchment land use (distinguishing urban, forested and grassland area as well as 22 different agricultural crop types) and 39 micropollutants using Linear Mixed Models (LMMs). Ecotoxicological risks were indicated for mixtures of pharmaceutical and industrial chemicals for 100 % and for pesticides for 55 % of the sites. The proportion of urban area in the catchment was positively related with concentrations of most pharmaceuticals and industrial chemicals (R2 up to 0.54), whereas the proportions of grassland and forested areas generally showed negative relations. Cropland overall showed weak positive relationships with micropollutant concentrations (R2 up to 0.29). Individual crop types, particularly vegetables and permanent crops, showed higher relations (R2 up to 0.46). The findings suggest that crop type-specific pesticide applications are mirrored in the detected micropollutant concentrations. This highlights the need for high-resolution spatial land use to investigate the magnitude and dynamics of micropollutant exposure and relevant pollution sources, which would remain undetected with highly aggregated land use classifications. Moreover, the findings imply the need for tailored management measures to reduce micropollutant concentrations from different sources and their related ecological effects. Urban point sources, could be managed by advanced wastewater treatment. The reduction of diffuse pollution from agricultural land uses requires additional measures, to prevent pesticides from entering the environment and exceeding regulatory quality targets.

2.
Environ Monit Assess ; 195(10): 1253, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37768406

RESUMEN

Ecological status assessment under the European Water Framework Directive (WFD) often integrates the impact of multiple stressors into a single index value. This hampers the identification of individual stressors being responsible for status deterioration. As a consequence, management measures are often disentangled from assessment results. To close this gap and to support river basin managers in the diagnosis of stressors, we linked numerous macroinvertebrate assessment metrics and one diatom index with potential causes of ecological deterioration through Bayesian belief networks (BBNs). The BBNs were informed by WFD monitoring data as well as regular consultation with experts and allow to estimate the probabilities of individual degradation causes based upon a selection of biological metrics. Macroinvertebrate metrics were shown to be stronger linked to hydromorphological conditions and land use than to water quality-related parameters (e.g., thermal and nutrient pollution). The modeled probabilities also allow to order the potential causes of degradation hierarchically. The comparison of assessment metrics showed that compositional and trait-based community metrics performed equally well in the diagnosis. The testing of the BBNs by experts resulted in an agreement between model output and expert opinion of 17-92% for individual stressors. Overall, the expert-based validation confirmed a good diagnostic potential of the BBNs; on average 80% of the diagnosed causes were in agreement with expert judgement. We conclude that diagnostic BBNs can assist the identification of causes of stream and river degradation and thereby inform the derivation of appropriate management decisions.


Asunto(s)
Monitoreo del Ambiente , Ríos , Teorema de Bayes , Benchmarking , Calidad del Agua
3.
Sci Rep ; 13(1): 9474, 2023 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301923

RESUMEN

In lotic freshwater ecosystems, the drift or downstream movement of animals (e.g., macroinvertebrates) constitutes a key dispersal pathway, thus shaping ecological and evolutionary patterns. There is evidence that macroinvertebrate drift may be modulated by parasites. However, most studies on parasite modulation of host drifting behavior have focused on acanthocephalans, whereas other parasites, such as microsporidians, have been largely neglected. This study provides new insight into possible seasonal and diurnal modulation of amphipod (Crustacea: Gammaridae) drift by microsporidian parasites. Three 72 h drift experiments were deployed in a German lowland stream in October 2021, April, and July 2022. The prevalence and composition of ten microsporidian parasites in Gammarus pulex clade E varied seasonally, diurnally, and between drifting and stationary specimens of G. pulex. Prevalence was generally higher in drifting amphipods than in stationary ones, mainly due to differences in host size. However, for two parasites, the prevalence in drift samples was highest during daytime suggesting changes in host phototaxis likely related to the parasite's mode of transmission and site of infection. Alterations in drifting behavior may have important implications for G. pulex population dynamics and microsporidians' dispersal. The underlying mechanisms are more complex than previously thought.


Asunto(s)
Anfípodos , Microsporidios , Parásitos , Animales , Anfípodos/parasitología , Ecosistema , Estaciones del Año , Interacciones Huésped-Parásitos , Crustáceos
4.
Sci Total Environ ; 896: 165081, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37355122

RESUMEN

Typology systems are frequently used in applied and fundamental ecology and are relevant for environmental monitoring and conservation. They aggregate ecosystems into discrete types based on biotic and abiotic variables, assuming that ecosystems of the same type are more alike than ecosystems of different types with regard to a specific property of interest. We evaluated whether this assumption is met by the Broad River Types (BRT), a recently proposed European river typology system, that classifies river segments based on abiotic variables, when it is used to group biological communities. We compiled data on the community composition of diatoms, fishes, and aquatic macrophytes throughout Europe and evaluated whether the composition is more similar in site groups with the same river type than in site groups of different river types using analysis of similarities, classification strength, typical species analysis, and the area under zeta diversity decline curves. We compared the performance of the BRT with those of four region-based typology systems, namely, Illies Freshwater Ecoregions, the Biogeographic Regions, the Freshwater Ecoregions of the World, and the Environmental Zones, as well as spatial autocorrelation (SA) classifications. All typology systems received low scores from most evaluation methods, relative to predefined thresholds and the SA classifications. The BRT often scored lowest of all typology systems. Within each typology system, community composition overlapped considerably between site groups defined by the types of the systems. The overlap tended to be the lowest for fishes and between Illies Freshwater Ecoregions. In conclusion, we found that existing broad-scale river typology systems fail to delineate site groups with distinct and compositionally homogeneous communities of diatoms, fishes, and macrophytes. A way to improve the fit between typology systems and biological communities might be to combine segment-based and region-based typology systems to simultaneously account for local environmental variation and historical distribution patterns, thus potentially improving the utility of broad-scale typology systems for freshwater biota.


Asunto(s)
Diatomeas , Ecosistema , Animales , Ríos , Peces , Monitoreo del Ambiente/métodos
5.
Sci Total Environ ; 872: 162196, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36781140

RESUMEN

Our capacity to predict trajectories of ecosystem degradation and recovery is limited, especially when impairments are caused by multiple stressors. Recovery may be fast or slow and either complete or partial, sometimes result in novel ecosystem states or even fail completely. Here, we introduce the Asymmetric Response Concept (ARC) that provides a basis for exploring and predicting the pace and magnitude of ecological responses to, and release from, multiple stressors. The ARC holds that three key mechanisms govern population, community and ecosystem trajectories. Stress tolerance is the main mechanism determining responses to increasing stressor intensity, whereas dispersal and biotic interactions predominantly govern responses to the release from stressors. The shifting importance of these mechanisms creates asymmetries between the ecological trajectories that follow increasing and decreasing stressor intensities. This recognition helps to understand multiple stressor impacts and to predict which measures will restore communities that are resistant to restoration.


Asunto(s)
Ecosistema , Ríos
6.
Sci Total Environ ; 851(Pt 1): 158065, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35981597

RESUMEN

Rivers are a key part of the hydrological cycle and a vital conduit of water resources, but are under increasing threat from anthropogenic pressures. Linking pressures with ecosystem services is challenging because the processes interconnecting the physico-chemical, biological and socio-economic elements are usually captured using heterogenous methods. Our objectives were, firstly, to advance an existing proof-of-principle Bayesian belief network (BBN) model for integration of ecosystem services considerations into river management. We causally linked catchment stressors with ecosystem services using weighted evidence from an expert workshop (capturing confidence among expert groups), legislation and published literature. The BBN was calibrated with analyses of national monitoring data (including non-linear relationships and ecologically meaningful breakpoints) and expert judgement. We used a novel expected index of desirability to quantify the model outputs. Secondly, we applied the BBN to three case study catchments in Ireland to demonstrate the implications of changes in stressor levels for ecosystem services in different settings. Four out of the seven significant relationships in data analyses were non-linear, highlighting that non-linearity is common in ecosystems, but rarely considered in environmental modelling. Deficiency of riparian shading was identified as a prevalent and strong influence, which should be addressed to improve a broad range of societal benefits, particularly in the catchments where riparian shading is scarce. Sediment load had a lower influence on river biology in flashy rivers where it has less potential to settle out. Sediment interacted synergistically with organic matter and phosphate where these stressors were active; tackling these stressor pairs simultaneously can yield additional societal benefits compared to the sum of their individual influences, which highlights the value of integrated management. Our BBN model can be parametrised for other Irish catchments whereas elements of our approach, including the expected index of desirability, can be adapted globally.


Asunto(s)
Análisis de Datos , Ecosistema , Teorema de Bayes , Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente/métodos , Fosfatos , Ríos
7.
Sci Total Environ ; 842: 156689, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35724793

RESUMEN

Humans have severely altered freshwater ecosystems globally, causing a loss of biodiversity. Regulatory frameworks, like the Water Framework Directive, have been developed to support actions that halt and reverse this loss. These frameworks use typology systems that summarize freshwater ecosystems into environmentally delineated types. Within types, ecosystems that are minimally impacted by human activities, i.e., in reference conditions, are expected to be similar concerning physical, chemical, and biological characteristics. This assumption is critical when water quality assessments rely on comparisons to type-specific reference conditions. Lyche Solheim et al. (2019) developed a pan-European river typology system, the Broad River Types, that unifies the national Water Framework Directive typology systems and is gaining traction within the research community. However, it is unknown how similar biological communities are within these individual Broad River Types. We used analysis of similarities and classification strength analysis to examine if the Broad River Types delineate distinct macroinvertebrate communities across Europe and whether they outperform two ecoregional approaches: the European Biogeographical Regions and Illies' Freshwater Ecoregions. We determined indicator and typical taxa for the types of all three typology systems and evaluated their distinctiveness. All three typology systems captured more variation in macroinvertebrate communities than random combinations of sites. The results were similar among typology systems, but the Broad River Types always performed worse than either the Biogeographic Regions or Illies' Freshwater Ecoregions. Despite reaching statistical significance, the statistics of analysis of similarity and classification strength were low in all tests indicating substantial overlap among the macroinvertebrate communities of different types. We conclude that the Broad River Types do not represent an improvement upon existing freshwater typologies when used to delineate macroinvertebrate communities and we propose future avenues for advancement: regionally constrained types, better recognition of intermittent rivers, and consideration of biotic communities.


Asunto(s)
Ecosistema , Ríos , Animales , Biodiversidad , Monitoreo del Ambiente/métodos , Humanos , Invertebrados
8.
Ecotoxicol Environ Saf ; 236: 113474, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35390685

RESUMEN

Modern wastewater treatment plants cannot completely remove pollutants. Often, effluents entering the aquatic environment still contain micropollutants such as pharmaceuticals or pesticides, which may impose adverse effects on aquatic biota. At the same time, a large proportion of free-living aquatic species are known to be infected with parasites, which raises the question of interactions between environmental stressors (such as micropollutants) and parasite infection. We chose the freshwater amphipod Gammarus fossarum (Koch, 1835) as a test organism to investigate potential pollutant-parasite interactions. This gammarid is frequently used in ecotoxicological tests and is also commonly infected with larvae of the acanthocephalan parasite species Polymorphus minutus (Zeder, 1800) Lühe, 1911. We exposed infected and uninfected specimens of G. fossarum to conventionally-treated wastewater and river water in a 22-day flow channel experiment. The test organisms' response was measured as mortality rates, concentrations or activities of five biomarkers, and overall locomotor activity. No significant differences were found between mortality rates of different exposure conditions. Contrastingly, three biomarkers (phenoloxidase activity, glycogen, and lipid concentrations) showed a significant increase in infected gammarids, while the effect of the water type was insignificant. Infected gammarids also showed a significantly higher locomotor activity in both water types. Our results suggest that the response of G. fossarum during the exposure experiments was mainly driven by parasite infection. This implies that parasites may act as additional biotic stressors in multiple stressor scenarios, and therefore, might play an important role when measuring the response of organisms to chemical stressors. Future ecotoxicological studies and assessments thus should consider parasite infection as an additional test parameter.


Asunto(s)
Acantocéfalos , Anfípodos , Enfermedades Parasitarias , Contaminantes Químicos del Agua , Acantocéfalos/fisiología , Anfípodos/fisiología , Animales , Biomarcadores , Interacciones Huésped-Parásitos , Locomoción , Aguas Residuales/toxicidad , Agua , Contaminantes Químicos del Agua/toxicidad
9.
Environ Pollut ; 286: 117241, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33975214

RESUMEN

To date, micropollutants from anthropogenic sources cannot be completely removed from effluents of wastewater treatment plants and therefore enter freshwater systems, where they may impose adverse effects on aquatic organisms, for example, on fish. Advanced treatment such as ozonation aims to reduce micropollutants in wastewater effluents and, thus, to mitigate adverse effects on the environment. To investigate the impact and efficiency of ozonation, four different water types were tested: ozonated wastewater (before and after biological treatment), conventionally-treated wastewater, and water from a river (River Ruhr, Germany) upstream of the wastewater treatment plant effluent. Zebrafish (Danio rerio) embryos were used to study lethal and sublethal effects in a modified fish early life-stage test. Mortality occurred during exposure in the water samples from the wastewater treatment plant and the river in the first 24 h post-fertilization, ranging from 12% (conventional wastewater) to 40% (river water). Regarding sublethal endpoints, effects compared to the negative control resulted in significantly higher heart rates (ozonated wastewater), and significantly reduced swimming activity (highly significant in ozonated wastewater and ozone reactor water, significant in only the last time interval in river water). Moreover, the respiration rates were highly increased in both ozonated wastewater samples in comparison to the negative control. Significant differences between the ozonated wastewater samples occurred in the embryonic behavior and heart rates, emphasizing the importance of subsequent biological treatment of the ozonated wastewater. Only the conventionally-treated wastewater sample did not elicit negative responses in zebrafish, indicating that the discharge of conventional wastewater poses no greater risk to embryonic and larval zebrafish than water from the river Ruhr itself. The sublethal endpoints embryonic- and larval behavior, heart rates, and respiration were found to be the most sensitive endpoints in this fish early life-stage test and can add valuable information on the toxicity of environmental samples.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Animales , Larva , Aguas Residuales , Contaminantes Químicos del Agua/toxicidad , Pez Cebra
10.
Water Res ; 196: 116981, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33770676

RESUMEN

Despite advances in conceptual understanding, single-stressor abatement approaches remain common in the management of fresh waters, even though they can produce unexpected ecological responses when multiple stressors interact. Here we identify limitations restricting the development of multiple-stressor management strategies and address these, bridging theory and practice, within a novel empirical framework. Those critical limitations include that (i) monitoring schemes fall short of accounting for theory on relationships between multiple-stressor interactions and ecological responses, (ii) current empirical modelling approaches neglect the prevalence and intensity of multiple-stressor interactions, and (iii) mechanisms of stressor interactions are often poorly understood. We offer practical recommendations for the use of empirical models and experiments to predict the effects of freshwater degradation in response to changes in multiple stressors, demonstrating this approach in a case study. Drawing on our framework, we offer practical recommendations to support the development of effective management strategies in three general multiple-stressor scenarios.


Asunto(s)
Ecosistema , Agua Dulce , Ríos
11.
Sci Rep ; 11(1): 3440, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33564005

RESUMEN

Intraspecific diet specialization, usually driven by resource availability, competition and predation, is common in natural populations. However, the role of parasites on diet specialization of their hosts has rarely been studied. Eye flukes can impair vision ability of their hosts and have been associated with alterations of fish feeding behavior. Here it was assessed whether European perch (Perca fluviatilis) alter their diet composition as a consequence of infection with eye flukes. Young-of-the-year (YOY) perch from temperate Lake Müggelsee (Berlin, Germany) were sampled in two years, eye flukes counted and fish diet was evaluated using both stomach content and stable isotope analyses. Perch diet was dominated by zooplankton and benthic macroinvertebrates. Both methods indicated that with increasing eye fluke infection intensity fish had a more selective diet, feeding mainly on the benthic macroinvertebrate Dikerogammarus villosus, while less intensively infected fish appeared to be generalist feeders showing no preference for any particular prey type. Our results show that infection with eye flukes can indirectly affect interaction of the host with lower trophic levels by altering the diet composition and highlight the underestimated role of parasites in food web studies.


Asunto(s)
Conducta Animal , Infecciones Parasitarias del Ojo , Enfermedades de los Peces , Preferencias Alimentarias , Percas/parasitología , Trematodos , Infecciones por Trematodos , Animales , Infecciones Parasitarias del Ojo/parasitología , Infecciones Parasitarias del Ojo/veterinaria , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/fisiopatología , Infecciones por Trematodos/fisiopatología , Infecciones por Trematodos/veterinaria
12.
Glob Chang Biol ; 27(9): 1962-1975, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33372367

RESUMEN

The biota of European rivers are affected by a wide range of stressors impairing water quality and hydro-morphology. Only about 40% of Europe's rivers reach 'good ecological status', a target set by the European Water Framework Directive (WFD) and indicated by the biota. It is yet unknown how the different stressors in concert impact ecological status and how the relationship between stressors and status differs between river types. We linked the intensity of seven stressors to recently measured ecological status data for more than 50,000 sub-catchment units (covering almost 80% of Europe's surface area), which were distributed among 12 broad river types. Stressor data were either derived from remote sensing data (extent of urban and agricultural land use in the riparian zone) or modelled (alteration of mean annual flow and of base flow, total phosphorous load, total nitrogen load and mixture toxic pressure, a composite metric for toxic substances), while data on ecological status were taken from national statutory reporting of the second WFD River Basin Management Plans for the years 2010-2015. We used Boosted Regression Trees to link ecological status to stressor intensities. The stressors explained on average 61% of deviance in ecological status for the 12 individual river types, with all seven stressors contributing considerably to this explanation. On average, 39.4% of the deviance was explained by altered hydro-morphology (morphology: 23.2%; hydrology: 16.2%), 34.4% by nutrient enrichment and 26.2% by toxic substances. More than half of the total deviance was explained by stressor interaction, with nutrient enrichment and toxic substances interacting most frequently and strongly. Our results underline that the biota of all European river types are determined by co-occurring and interacting multiple stressors, lending support to the conclusion that fundamental management strategies at the catchment scale are required to reach the ambitious objective of good ecological status of surface waters.


Asunto(s)
Monitoreo del Ambiente , Ríos , Ecosistema , Hidrología , Calidad del Agua
13.
Nat Ecol Evol ; 4(8): 1060-1068, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32541802

RESUMEN

Climate and land-use change drive a suite of stressors that shape ecosystems and interact to yield complex ecological responses (that is, additive, antagonistic and synergistic effects). We know little about the spatial scales relevant for the outcomes of such interactions and little about effect sizes. These knowledge gaps need to be filled to underpin future land management decisions or climate mitigation interventions for protecting and restoring freshwater ecosystems. This study combines data across scales from 33 mesocosm experiments with those from 14 river basins and 22 cross-basin studies in Europe, producing 174 combinations of paired-stressor effects on a biological response variable. Generalized linear models showed that only one of the two stressors had a significant effect in 39% of the analysed cases, 28% of the paired-stressor combinations resulted in additive effects and 33% resulted in interactive (antagonistic, synergistic, opposing or reversal) effects. For lakes, the frequencies of additive and interactive effects were similar for all spatial scales addressed, while for rivers these frequencies increased with scale. Nutrient enrichment was the overriding stressor for lakes, with effects generally exceeding those of secondary stressors. For rivers, the effects of nutrient enrichment were dependent on the specific stressor combination and biological response variable. These results vindicate the traditional focus of lake restoration and management on nutrient stress, while highlighting that river management requires more bespoke management solutions.


Asunto(s)
Ecosistema , Agua Dulce , Biota , Europa (Continente) , Ríos
14.
Sci Rep ; 10(1): 2694, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060320

RESUMEN

Parasites comprise a huge part of the biodiversity on earth. However, on a local scale, not much is known about their diversity and community structure. Here, we assess the diversity of larval trematode communities in an interconnected freshwater system of the River Ruhr in Germany and analyse how the parasites are spatially and temporally distributed in the ecosystem. A total of 5347 snail hosts belonging to six species revealed a highly diverse parasite fauna with 36 trematode species. More abundant snail species harboured more species-rich trematode faunas and communities, with the two dominant snail species, Radix auricularia and Gyraulus albus, accounting for almost 90% of the trematode diversity and harbouring spatially and temporally stable parasite communities. The results highlight the important role of stable keystone host populations for trematode transmission, structure and diversity. This local trematode diversity reveals information on definitive host occurrence and trophic interactions within ecosystems.


Asunto(s)
Biodiversidad , Ecosistema , Agua Dulce/parasitología , Trematodos/clasificación , Animales , Alemania , Interacciones Huésped-Parásitos/genética , Humanos , Larva/parasitología , Dinámica Poblacional , Ríos , Caracoles/parasitología , Trematodos/patogenicidad
15.
Sci Total Environ ; 658: 1228-1238, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30677985

RESUMEN

The Water Framework Directive (WFD) is a pioneering piece of legislation that aims to protect and enhance aquatic ecosystems and promote sustainable water use across Europe. There is growing concern that the objective of good status, or higher, in all EU waters by 2027 is a long way from being achieved in many countries. Through questionnaire analysis of almost 100 experts, we provide recommendations to enhance WFD monitoring and assessment systems, improve programmes of measures and further integrate with other sectoral policies. Our analysis highlights that there is great potential to enhance assessment schemes through strategic design of monitoring networks and innovation, such as earth observation. New diagnostic tools that use existing WFD monitoring data, but incorporate novel statistical and trait-based approaches could be used more widely to diagnose the cause of deterioration under conditions of multiple pressures and deliver a hierarchy of solutions for more evidence-driven decisions in river basin management. There is also a growing recognition that measures undertaken in river basin management should deliver multiple benefits across sectors, such as reduced flood risk, and there needs to be robust demonstration studies that evaluate these. Continued efforts in 'mainstreaming' water policy into other policy sectors is clearly needed to deliver wider success with WFD goals, particularly with agricultural policy. Other key policy areas where a need for stronger integration with water policy was recognised included urban planning (waste water treatment), flooding, climate and energy (hydropower). Having a deadline for attaining the policy objective of good status is important, but even more essential is to have a permanent framework for river basin management that addresses the delays in implementation of measures. This requires a long-term perspective, far beyond the current deadline of 2027.

16.
Sci Total Environ ; 651(Pt 1): 1105-1113, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30360242

RESUMEN

More often than not, rivers are impacted by multiple stressors simultaneously affecting water quality, ecological flow, habitat diversity and ultimately lotic biodiversity. Identifying individual stressors as specific causes of deterioration can help inform water managers about stressor hierarchy and appropriate management options. Here, we investigate whether biological metrics from bioassessment schemes hold diagnostic capabilities to distinguish between the impact of individual stressors. We hypothesise that stressor-specific responses occur, when individual stressors show independent 'modes of action' (i.e. the specific stress-induced changes of environmental factors that modify the ecological niches of the species constituting the biological community). The stress receptors comprised three aquatic organism groups (macrophytes, benthic invertebrates, fish) represented by 437 biological metrics relevant in aquatic bioassessment. The stressor groups under investigation were physico-chemical, hydromorphological and hydrological stress. The data originated from official monitoring programmes with 769 sampling sites located at three broad river types in Western and Central Germany. Linear and non-linear variance partitioning was performed separately for each river type, with the non-linear analysis using a combination of boosted regression tree modeling and variance partitioning. We considered metrics to be potentially stressor-specific, if the corresponding models were explained predominantly by one stressor group. The linear analyses revealed 16 metrics that met our criteria. Subsequent non-linear modeling resulted in two genuinely stressor-specific metrics, both based on invertebrate data: The Index of Biocoenotic Region (specifically indicating hydromorphological stress) and the Relative abundance of alien invertebrate species (specifically indicating physico-chemical stress). We conclude that stressor-specific metrics can be empirically derived based on available monitoring data, and thus help support decision making in environmental management. However, their applicability is restricted to specific regions (e.g. river basin districts) reflecting the case-specific circumstance to which these metrics are conditioned.


Asunto(s)
Organismos Acuáticos/fisiología , Monitoreo del Ambiente/métodos , Peces/fisiología , Invertebrados/fisiología , Fenómenos Fisiológicos de las Plantas , Ríos , Animales , Alemania , Hidrología , Modelos Biológicos , Ríos/química
17.
Water Res ; 139: 381-394, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29673937

RESUMEN

Rivers are among the most sensitive of all ecosystems to the effects of global change, but options to prevent, mitigate or restore ecosystem damage are still inadequately understood. Riparian buffers are widely advocated as a cost-effective option to manage impacts, but empirical evidence is yet to identify ideal riparian features (e.g. width, length and density) which enhance ecological integrity and protect ecosystem services in the face of catchment-scale stressors. Here, we use an extensive literature review to synthesise evidence on riparian buffer and catchment management effects on instream environmental conditions (e.g. nutrients, fine sediments, organic matter), river organisms and ecosystem functions. We offer a conceptual model of the mechanisms through which catchment or riparian management might impact streams either positively or negatively. The model distinguishes scale-independent benefits (shade, thermal damping, organic matter and large wood inputs) that arise from riparian buffer management at any scale from scale-dependent benefits (nutrient or fine sediment retention) that reflect stressor conditions at broader (sub-catchment to catchment) scales. The latter require concerted management efforts over equally large domains of scale (e.g. riparian buffers combined with nutrient restrictions). The evidence of the relationships between riparian configuration (width, length, zonation, density) and scale-independent benefits is consistent, suggesting a high certainty of the effects. In contrast, scale-dependent effects as well as the biological responses to riparian management are more uncertain, suggesting that ongoing diffuse pollution (nutrients, sediments), but also sources of variability (e.g. hydrology, climate) at broader scales may interfere with the effects of local riparian management. Without concerted management across relevant scales, full biological recovery of damaged lotic ecosystems is unlikely. There is, nevertheless, sufficient evidence that the benefits of riparian buffers outweigh potential adverse effects, in particular if located in the upstream part of the stream network. This supports the use of riparian restoration as a no-regrets management option to improve and sustain lotic ecosystem functioning and biodiversity.


Asunto(s)
Conservación de los Recursos Naturales , Modelos Teóricos , Ríos , Ecosistema
18.
Sci Total Environ ; 609: 875-884, 2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-28783900

RESUMEN

Within a heavily modified catchment, formerly polluted streams are now free of untreated wastewater. Additionally, the morphology of streams has been improved by physical habitat restoration. Both water quality and structural improvements offered a unique opportunity to investigate the recolonisation of restored sections by benthic macroinvertebrates. As dispersal is a key mechanism for recolonisation, we developed a method to predict the dispersal of 18 aquatic insect taxa to 35,338 river sections (section length: 2m) within the catchment. Source populations of insect taxa were sampled at 33 sites. In addition, 14 morphologically restored sites were sampled and constituted the validation dataset. We applied a "least-cost" modelling approach within a raster-based GIS model, combining taxon-specific aquatic and terrestrial dispersal capabilities with the "friction" that physical migration barriers impose on dispersal of aquatic and terrestrial stages. This taxon-specific modelling approach was compared to a conservative modelling approach, assuming a Euclidean distance of 5km as the maximum dispersal distance for any source population regardless of dispersal barriers. Least-cost modelling showed a significantly better performance in terms of the correct classification rate (CCR) and true predicted absences (specificity), with on average 37% points higher CCR and 42% points higher specificity. Sensitivity was 18% points lower. At 71% of the validation sites, recolonisation was predicted with at least a modest goodness of fit (CCR>70%). Conversely, the conservative modelling approach achieved a modest goodness of fit for only 14% of the validation sites. For 44% of the taxa, least-cost modelling showed a high CCR (=100%), whereas the conservative approach showed a high CCR for none of the taxa. Our approach can help water managers select appropriate sites for restoration to increase recolonisation and biological recovery.


Asunto(s)
Distribución Animal , Drenaje de Agua , Invertebrados , Ríos , Animales , Ecosistema , Alemania , Insectos , Modelos Biológicos , Calidad del Agua
19.
Sci Total Environ ; 603-604: 148-154, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28624635

RESUMEN

Interactions of multiple stressors in lotic systems have received growing interest and have been analysed in a growing number of studies using experiment and survey data. In this study, we present a protocol to identify, display and analyse stressors of rivers and their interactions (additive, synergistic or antagonistic). We used a dataset of 125 samples of central European lowland rivers comprising hydromorphological, physico-chemical and land use stressor and pressure variables as well as benthic macroinvertebrate traits as biological response variables. To identify and visualise multiple stressor combinations jointly operating in the data set, we applied social network analysis. The main co-occurring stressor combination was fine sediment accumulation (hydromorphological stress) and enhanced phosphorus concentration (nutrient stress). Agricultural (cropland) and urban land use were identified as the main large scale environmental pressures. Stressor interactions were analysed using generalised linear regression modelling (GLM) including pairwise interaction terms. Altogether, 14 macroinvertebrate response variables were tested on six stressor combinations and revealed predominantly additive effects (80% of all significant models with absolute standardised effect sizes >0.1). Significant antagonistic and synergistic interactions occurred in almost 20% of the models. Fine sediment stress was more influential and frequent than nutrient stress. The methodology presented here is standardisable and thus could help inform practitioners in aquatic ecosystem monitoring about prominent combinations of multiple stressors and their interactions. Yet, further understanding of the mechanisms behind the biological responses is required to be able to derive appropriate guidance for management. This applies to rather complex stressors and pressures, such as land use, for which more detailed data (e.g. nutrient concentrations, fine sediment entry, pesticide pollution) is often missing.


Asunto(s)
Monitoreo del Ambiente , Invertebrados , Ríos/química , Contaminantes Químicos del Agua/análisis , Animales , Ecosistema , Europa (Continente) , Sedimentos Geológicos , Modelos Lineales , Plaguicidas/análisis , Fósforo/análisis
20.
Sci Total Environ ; 593-594: 27-35, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28340479

RESUMEN

Freshwater ecosystems are impacted by a range of stressors arising from diverse human-caused land and water uses. Identifying the relative importance of single stressors and understanding how multiple stressors interact and jointly affect biology is crucial for River Basin Management. This study addressed multiple human-induced stressors and their effects on the aquatic flora and fauna based on data from standard WFD monitoring schemes. For altogether 1095 sites within a mountainous catchment, we used 12 stressor variables covering three different stressor groups: riparian land use, physical habitat quality and nutrient enrichment. Twenty-one biological metrics calculated from taxa lists of three organism groups (fish, benthic invertebrates and aquatic macrophytes) served as response variables. Stressor and response variables were subjected to Boosted Regression Tree (BRT) analysis to identify stressor hierarchy and stressor interactions and subsequently to Generalised Linear Regression Modelling (GLM) to quantify the stressors standardised effect size. Our results show that riverine habitat degradation was the dominant stressor group for the river fauna, notably the bed physical habitat structure. Overall, the explained variation in benthic invertebrate metrics was higher than it was in fish and macrophyte metrics. In particular, general integrative (aggregate) metrics such as % Ephemeroptera, Plecoptera and Trichoptera (EPT) taxa performed better than ecological traits (e.g. % feeding types). Overall, additive stressor effects dominated, while significant and meaningful stressor interactions were generally rare and weak. We concluded that given the type of stressor and ecological response variables addressed in this study, river basin managers do not need to bother much about complex stressor interactions, but can focus on the prevailing stressors according to the hierarchy identified.


Asunto(s)
Biota , Ecosistema , Monitoreo del Ambiente , Animales , Conservación de los Recursos Naturales , Peces , Alemania , Invertebrados , Plantas , Ríos , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...